Radiology Room |
Ultrasound Room |
Surgery Room |
Laboratory Room |
Comprehensive Room |
Pediatrics Room |
Dental Room |
Medical operation instruments |
Hospital Furniture |
Medical supplies |
News Center
3D-Printable Tissue Adhesive with Blood-Repelling Feature to Revolutionize Surgical Wound Closure
Tissue adhesives offer a modern alternative to traditional wound closure methods such as sutures and staples. They come with benefits including reduced damage to tissues, quicker application, and potentially less scarring. However, the current adhesives have their drawbacks, like being time-consuming to apply, requiring a certain level of skill, and causing discomfort to patients. These adhesives may not be as effective on irregularly shaped or moving tissues, and their application can prolong surgical times. Furthermore, they can damage tissues, and the materials may not always integrate well with the body. Now, the development of 3D printable tissue adhesives has introduced a new dimension to wound closure and tissue repair.
Researchers from MIT (Cambridge, MA, USA) have developed a groundbreaking 3D-printable tissue adhesive that demonstrates superior tissue adhesion, quickly seals wounds in various surgical conditions, and features an innovative blood-repelling feature. The adhesive is made of a special ink that combines poly(acrylic acid) and polyurethane. This composition is key to its strong adhesion, with specific chemical groups forming a tight bond with biological tissues. The researchers enhanced the adhesive by adding a hydrophobic matrix, which repels blood and acts as a barrier against bodily fluids, maintaining the adhesive's effectiveness even in bleeding tissues. Most tissue adhesives struggle in such conditions, making it hard to stop bleeding.
Moreover, the addition of a hydrophobic protective matrix in the adhesive further boosts its functionality, providing a shield against bodily fluids and preserving its integrity in challenging bleeding scenarios. In tests, this 3D printable tissue adhesive outperformed existing commercial adhesives in adhering to tissues. This blood-repellent feature makes the 3D printable tissue adhesive a game-changer in the field of biomedical materials. It overcomes the limitations of existing adhesives in bleeding scenarios and could be used in everything from closing wounds to creating bio-integrated devices. The adhesive's capabilities suggest it could revolutionize not just wound closure but also pave the way for a range of tissue-interacting devices. Going forward, the researchers aim to focus on developing devices that interface with soft tissues, using this adhesive as a key component.
"Leveraging the 3D printability of our material opens up exciting possibilities for designing patches with tissue-specific properties, paving the way for more personalized tissue-repair solutions," said Sarah Wu, a Ph.D. candidate in the Department of Mechanical Engineering at MIT.
http://www.gzjiayumed.com/en/index.asp