Radiology Room |
Ultrasound Room |
Surgery Room |
Laboratory Room |
Comprehensive Room |
Pediatrics Room |
Dental Room |
Medical operation instruments |
Hospital Furniture |
Medical supplies |
News Center
Novel AI Technology to Revolutionize Cancer Detection in Dense Breasts
Gauze is commonly used in medical procedures for managing bleeding and assisting in hemostasis. However, if left inside the body by mistake, it can cause inflammation and infection. Now, researchers have derived a hemostatic agent from mussels and silkworm cocoons while demonstrating its efficacy in clotting blood and safety within the body.
Traditional hemostatic agents, like gauze or medical bands, are primarily used on the skin's surface. While there are materials that naturally decompose inside the body, such as fibrin glue and collagen sponges, they require proteins from human or animal sources, making them quite expensive. Additionally, current hemostatic materials often fail to consistently stick to bleeding sites and are vulnerable to infection from external contaminants. To tackle these challenges, a joint research team from Pohang University of Science & Technology (POSTECH, Gyeongbuk, Korea) has created a bilayer adhesive hemostat. This new development combines mussel adhesive proteins, known for their strong tissue adhesion underwater, with silk fibroin derived from silkworm cocoons.
Their research showed that mussel adhesive proteins have impressive hemostatic properties, including the activation of platelets. The team used methanol vapor to alter the secondary structure of the silk proteins from silkworms, creating a nanofiber membrane with a hydrophobic exterior. They designed a hemostatic agent with an inner layer of mussel adhesion proteins for attaching to wounds, and an outer layer made entirely of silkworm silk proteins. In animal tests, this hemostatic agent quickly enhanced tissue adhesion and hemostasis in bleeding wounds, effectively blocking water-borne infectious agents like bacteria from entering. This innovative hemostatic agent, using two highly biocompatible and biodegradable proteins, introduces a new approach to blood clotting and infection prevention.
"We have validated the exceptional hemostatic performance of a multifunctional topical adhesive hemostatic agent that is derived from nature and is based on degradable proteins in the human body," said Professor Hyung Joon Cha of the POSTECH who led the study. "We will continue further research to assess its applicability in real-world patient care or surgical settings."
http://www.gzjiayumed.com/en/index.asp