Radiology Room |
Ultrasound Room |
Surgery Room |
Laboratory Room |
Comprehensive Room |
Pediatrics Room |
Dental Room |
Medical operation instruments |
Hospital Furniture |
Medical supplies |
News Center
Miniaturized X-ray System Offers Full-Size Performance
A mobile x-ray system intended for use in all areas of a hospital, including demanding environments, uses lightweight carbon nanotubes as an electron emitter.
The Micro-X (Tonsley, Australia) Pico system is a lightweight, easy to use, highly maneuverable device that provides high-quality images based on proprietary Nano Electronic X-Ray (NEX) carbon nanotubes. Thanks to the reduced weighed of the electron emitter, Pico can dispense with much of the electric servo-driven motorized technology required to power conventional mobile x-ray systems, resulting in a unit that weighs just 75 kg. The carbon nanotubes also provide more control than traditional technology, at every kV and at every mAs.
Design features include a digital flat panel detector (FPD), controls placed the tube head that can be reached by the system operator, integrated imaging processing software system, and flexible image communication options. Thanks to the precise and instantaneous NEX tube technology, the array of carbon nanotubes x-ray sources can be electronically switched on in sequence, producing a moving x-ray beam that utilizes no moving parts.
“Micro-X is defining the future of X-ray imaging, similar to how LED’s have replaced traditional glass filament light bulbs,” said Charlie Hicks, general manager of mobile DR sat Micro-X. “I truly believe that NEX technology is the future of X-ray imaging. We are so confident in the reliability and performance of this new tube technology that we are willing to back it with our incredible Tubes for Life warranty.”
Traditional x-ray tubes use a hot filament, like an old-fashioned light bulb, to generate the electron stream needed to make x-rays; but Micro-X’s technology applies voltage to an emitter made from carbon nanotubes to generate the stream of electrons instead. It’s smaller, more energy efficient and longer lasting, like LED lights. Not only are the devices much lighter, they produce a beam that can be controlled instantly and precisely by simply adjusting the voltage.
http://www.gzjiayumed.com/en/index.asp