Radiology Room |
Ultrasound Room |
Surgery Room |
Laboratory Room |
Comprehensive Room |
Pediatrics Room |
Dental Room |
Medical operation instruments |
Hospital Furniture |
Medical supplies |
News Center
Nanosecond Pulsed Field Ablation Technology Effective in Treating Atrial Fibrillation in Cardiac Surgery
A new method for surgical cardiac ablation designed to create continuous linear transmural ablations during cardiac procedures offers significant safety and performance advantages over existing thermal ablation techniques. This approach has the potential to shorten procedure times and reduce the risk of collateral damage to surrounding tissues.
Pulse Biosciences’ (Hayward, CA, USA) Cardiac Surgery System with Surgical Clamp is designed to produce durable and continuous transmural ablation lesions during cardiac surgeries to treat atrial fibrillation. The bipolar clamp employs the company's unique Nanosecond Pulsed Field Ablation (nsPFA) technology. Pre-clinical studies have shown that a single application with the Surgical Clamp, lasting less than two seconds, can create a consistent, durable transmural ablation. This is significantly faster, taking about one-twentieth of the time required by current thermal ablation methods. Additionally, the non-thermal nature of nano-PFA eliminates the risk of thermal spread, which can cause unintended damage to nearby tissues, making it a safer alternative to thermal radiofrequency ablation.
The nano-PFA Cardiac Surgical System was granted FDA Breakthrough Device Designation in early July 2024. Pulse Biosciences has now announced the successful treatment of the first two patients in a first-in-human feasibility study using this novel Cardiac Surgery System for cardiac tissue ablation to treat atrial fibrillation. This multicenter study will involve up to 30 patients and will include endocardial catheter-based remapping to confirm chronic isolation approximately three months post-treatment. The initial procedure results demonstrated effective pulmonary vein and ‘box’ isolation using Pulse’s Cardiac Surgery System. Surgeons were able to quickly and efficiently create linear ablations, accomplishing the task in a fraction of the time required by current thermal techniques like radiofrequency or cryoablation.
“These initial treatment results confirm our preclinical work with the cardiac surgical system. The patients tolerated our procedure well. We are pleased to see how the intuitive design of the device facilitates an efficient procedure where surgeons can create controlled lesions with adequate depth very rapidly,” said Dr. Gan Dunnington, Chief Medical Officer, Cardiac Surgery of Pulse Biosciences. “We are excited to continue enrollment in this feasibility clinical study, which is intended to demonstrate the device’s safety, effectiveness and durability profile.”
http://www.gzjiayumed.com/en/index.asp .