Radiology Room |
Ultrasound Room |
Surgery Room |
Laboratory Room |
Comprehensive Room |
Pediatrics Room |
Dental Room |
Medical operation instruments |
Hospital Furniture |
Medical supplies |
News Center
Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment
The field of personalized medicine is transforming rapidly, with advancements like wearable devices and home testing kits making it increasingly easy to monitor a wide range of health metrics, from heart rate to glucose levels to microbiome diversity. Despite these advancements, there is still a significant gap in integrating these technologies seamlessly with the human body, especially when it comes to invasive monitoring devices. Now, a breakthrough in research on stretchable sensors could pave the way for developing soft, flexible microneedles, enhancing both comfort and accuracy in long-term health monitoring.
Developed by researchers at the University of Southern California (Los Angeles, CA, USA), this new technology involves stretchable three-dimensional penetrating microelectrode arrays. Traditional microneedle electrodes used for brain sensing, stimulation, and biomarker diagnosis are generally rigid, which limits their application. The new soft microneedle electrodes are specifically designed to be adaptable with muscle and skin tissues that often deform, ensuring continuous contact and minimizing tissue damage. This adaptability is crucial for accurate health monitoring, from assessing bladder function to detecting subtle changes in cardiac rhythms.
This advancement is made possible by a hybrid fabrication method that combines laser micromachining, microfabrication, and transfer printing. This method is both low-cost and scalable, offering unprecedented stretchability in microneedle electrodes—60-90%—the highest ever reported. It also allows for the customization of electrode geometry, recording sites, and the mechanical and electrical properties of the device. An interesting feature of the research is its deep-sea origins, with the technology used to record electrical activity in the moving muscles of a sea slug. This novel platform technology suggests the potential of these microneedle electrodes for broader biomedical applications, including brain and nerve activity monitoring, electrochemical skin sensing, neuromuscular disorder diagnosis, and deep tissue drug delivery.
http://www.gzjiayumed.com/en/index.asp .