Radiology Room |
Ultrasound Room |
Surgery Room |
Laboratory Room |
Comprehensive Room |
Pediatrics Room |
Dental Room |
Medical operation instruments |
Hospital Furniture |
Medical supplies |
News Center
Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury
The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies. TBI, resulting from sudden trauma to the head, ranges from mild to severe brain injuries. Rapid diagnosis is crucial to prevent further irreversible damage. Traditional radiological methods like X-rays or MRIs, while useful, tend to be costly and slow to yield results. Now, researchers have pioneered a groundbreaking device that detects TBI through a safe laser directed into the eye. This method stands apart from conventional diagnostic techniques and is expected to be developed into a portable device for immediate assessment in the critical ‘golden hour’ following a TBI when treatment decisions must be taken.
Developed by the University of Birmingham, this hand-held device offers a swift, precise, and non-intrusive diagnostic tool for TBI. It does not create any additional discomfort for patients and can quickly provide information on the trauma's severity. Designed for on-site usage – be it roadside accidents, battlefield injuries, or sports-related traumas – the device is equipped with a class 1, CE-marked, eye-safe laser and a unique Raman spectroscopy system. This system employs light to reveal the biochemical and structural characteristics of molecules based on their light-scattering properties, detecting known biomarkers indicative of brain injury.
The device functions by scanning the back of the eye, where the optic nerve is located, leveraging the close connection between the optic nerve and the brain. The optic nerve carries vital biological information in the form of protein and lipid biomarkers. These biomarkers, usually existing in a tightly regulated balance, undergo changes during TBI, indicating potential issues. Previous studies have proven the technology's efficacy in detecting variations in these biomarkers in animal brain and eye tissues under different brain injury levels. The current device creates ‘molecular fingerprints’ by detecting and analyzing the composition and balance of these biomarkers.
The prototype built by the researchers can analyze the optic nerve's biochemical fingerprints to initially diagnose TBI on the scene. The researchers tested the device using a phantom eye for alignment and focusing capabilities, animal tissues to distinguish between TBI and non-TBI states, and developed AI-based decision support tools for rapid TBI classification. The device is now poised for advanced testing, including clinical feasibility, efficacy studies, and evaluating patient acceptability. The diagnostic tool is expected to be developed further into a portable technology that will be ideal for point-of-care situations and swiftly determine the occurrence and severity of TBI, thereby enabling appropriate and timely triage.
“Early diagnosis of TBI is crucial, as life-critical decisions on treatment must be made with the first ‘golden hour’ after injury,” said Professor Pola Goldberg Oppenheimer, School of Chemical Engineering, University of Birmingham. “However current diagnostic procedure relies on observation by ambulance crews, and MRI or CT scans at a hospital – which may be some distance away.”
http://www.gzjiayumed.com/en/index.asp