Radiology Room |
Ultrasound Room |
Surgery Room |
Laboratory Room |
Comprehensive Room |
Pediatrics Room |
Dental Room |
Medical operation instruments |
Hospital Furniture |
Medical supplies |
News Center
Bimanual Magnetic Soft Robots Perform First Ever Skull Base Surgery
Soft magnetic robots hold the promise of improving surgical outcomes due to their potential for miniaturization and naturally safe interaction with tissue. However, the independent control of multiple magnetic robots within the same confined space is hampered by unwanted simultaneous movements of the robots and their interactions. Now, for the first time, researchers have demonstrated the successful use of dual magnetic soft robots for skull base surgery.
Researchers at the University of Leeds’ (West Yorkshire, UK) STORM Lab have been exploring ways to independently control two magnetic robots so they can collaborate within a limited area inside the human body. The goal is for one robot to manage a camera and the other to operate a laser to remove tumors. Composed of silicone to minimize tissue damage, these devices are maneuvered by magnets on robotic arms situated outside the patient's body. The team carried out a successful trial using a skull replica where two robots performed endonasal brain surgery—a technique where a surgeon accesses the front regions of the brain and the top of the spine through the nose.
The researchers required the magnetic robots to move independently of each other—one to maneuver the camera and the other to aim a laser at a tumor. Typically, two closely situated magnets would attract each other, presenting a challenge for the researchers. They overcame this by designing the bodies of the tentacles to bend only in specific directions and by repositioning the north and south poles within each magnetic robot tentacle. Consequently, they were able to simulate the removal of a benign pituitary gland tumor at the base of the skull, establishing for the first time the feasibility of controlling two robots within a confined area of the body.
“This is a significant contribution to the field of magnetically controlled robotics,” said Zaneta Koszowska, a researcher in Leeds' School of Electronic and Electrical Engineering. “Our findings show that diagnostic procedures with a camera, as well as full surgical procedures, can be performed in small anatomical spaces.”
http://www.gzjiayumed.com/en/index.asp