Radiology Room |
Ultrasound Room |
Surgery Room |
Laboratory Room |
Comprehensive Room |
Pediatrics Room |
Dental Room |
Medical operation instruments |
Hospital Furniture |
Medical supplies |
News Center
AI Predicts Short-Term Risk of Atrial Fibrillation Using 24-Hour Holter Recordings
Atrial Fibrillation (AFib) affects millions of people each year. However, the condition is often unrecognized and untreated. Nowadays, patients are subject to 24-hour ambulatory electrocardiograms (ECGs) to receive a diagnosis, but this short-duration recording is known to have a low diagnostic yield and misses many patients with infrequent AFib episodes. Now, a first-of-its-kind study has demonstrated the capability of artificial intelligence (AI) in predicting AFib in the short-term using 24-hour Holter compared to resting 12-lead ECGs. While 12-lead ECG gives access to a larger view of the hearts' activity for a short period, 24-hour Holter provides longer-duration signals, therefore, offering additional inputs for predicting models.
The study consisted of training Cardiologs’ (Paris, France) deep neural network to predict the near-term presence or absence of AFib by only using the first 24 hours of an extended Holter recording. Results showed that the network was able to predict whether AFib would occur in the near future with an area under the receiver operating curve, sensitivity, and specificity of 79.4%, 76%, and 69%, respectively, and outperformed ECG features previously shown to be predictive of AFib. These results showed a 10-point improvement compared to a baseline model using age and sex.
"Cardiologs' study shows that 24-hour Holter data can be used to enhance current monitoring capabilities, bringing hope to high-risk patients who would benefit from proactive treatment and AFib mitigation strategies," said Dr. Jagmeet Singh, Cardiologist at Massachusetts General Hospital (MGH) and Professor of Medicine at Harvard Medical School, who led the study. "By getting patients the care they need sooner and potentially preventing more severe outcomes, we could help save many lives."
"The extension of AI capabilities towards predictions and digital biomarkers has the potential to bring improved health outcomes leading to new diagnostic paradigms," added Cardiologs CEO and co-founder Yann Fleureau. "Predictive biomarkers may lead to early detection, optimized patient monitoring, and improved patient management in general. At Cardiologs, we are excited to be at the forefront of innovations that help set a new standard of patient care."
http://www.gzjiayumed.com/en/index.asp